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Search for Quark-Lepton Compositeness using the Drell-Yan

process at D�

The D� Collaboration �
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Abstract

We present preliminary results on the search for quark-lepton compositeness

using the Drell-Yan process in pp collisions at
p
s = 1:8 TeV. If quarks and

leptons were composite with common substructure, the dielectron mass spec-

trum would show an excess in the high mass region relative to the Standard

model. We observe no such excess. We set a 95% con�dence level lower limit

on the compositness scale using a contact interaction model.
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I. INTRODUCTION

Measurement of the Drell-Yan di�erential cross section in the high dielectron invariant
mass region provides a test for quark and lepton compositeness. If quarks and leptons
were composite with common substructure, they will interact, thus modifying the cross
section predicted by the Standard Model. Interaction between these constituents well below
the energy scale of compositeness � can be described by an e�ective four fermion contact
interaction.

A general contact interaction lagrangian [3], [4] is written as

L =
g0
�2
f�0LL(�qL

�qL)(�lL�lL) + �1LL(�qL
� �a
2
qL)(�lL�

�a
2
lL)

+ �uLR(�lL
�lL)(�uR�uR) + �dLR(�lL

�lL)( �dR�dR)

+ �eRL(�qL
�qL)(�eL�eL)

+ �uRR(�uR
�uR)(�eR�eR) + �dRR( �dR

�dR)(�eR�eR)

+ �SC(�q
i
LdRuL)�eReLl

i
L) + h:cg (1)

where lL=(�; e)L and ql=(u; d)L, L(R) denotes the left(right) helicity projection, SC denotes
scalar channel, and �a are Pauli matrices. The compositeness scale � is chosen so that the
coupling g20=4�=1 and largest j�ijj=1. We set limit on compositeness scale � for LL, RR,
RL and LR terms of equation 1. The choice of coupling coe�cients �ij for these models are
shown in the following table:

Model �LL �RR �LR �RL

LL� � 1 0 0 0
RR� 0 � 1 0 0
LR� 0 0 � 1 0
RL� 0 0 0 � 1
V V � � 1 � 1 � 1 � 1
AA� � 1 � 1 � 1 � 1

The V V and AA denote vector and axial vector coupling.

II. DATA SELECTION

We use the Run 1 data taken in 1992-1993 and 1994-1995 collider run corresponding to
an integrated luminosity of 120.9 pb�1. The dielectron trigger requires two EM clusters of
7 GeV at level 1, one of which has an energy of 12 GeV with EM fraction of 85% at level
1.5. This is a hardware trigger. In level 2 two EM clusters of 20 GeV with loose quality and
isolation cuts are selected.

Electron identi�cation is de�ned with two categories: \tight" and \loose".
A tight electron satis�es the following criteria: the calorimeter cluster has high electro-

magnetic fraction(> 95%); the cluster shape (transversely and longitudinally) is consistent
with that expected for an electron; the cluster is isolated from other calorimeter activity,
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FIG. 1. Acceptance calculated for Drell-Yan events.

and there is a good quality track matched with the cluster. This last criteria is not imposed
for a loose electron.

In addition, electrons are restricted to the pseudorapidity region j � j< 1:1 for Central
Calorimeter(CC), and 1:5 <j � j< 2:5 for the End Calorimeter. Electrons in CC near the
calorimeter module edges are removed by requring j �e � �edge j> 0:05.

Dielectron event selection requires either both electrons central(CC-CC), or one electron
central and other electron forward(CC-EC). Every event requires at least one tight electron,
second electron could be tight or loose. Forward electrons are always requird to be tight.
Both electrons are required to have ET > 25 GeV

III. ACCEPTANCE

The acceptance of dielectron events in p�p collisions is de�ned as the fraction of events in
which both electrons pass the �ducial and kinematic cuts. We calculate the acceptance using
dielectron events from Drell-Yan process, generated using PYTHIA. The detector simulation
is performed using parametric Monte Carlo. Figure 1 shows the dependence of acceptance
with respect to dielectron invariant. MRSA0 parton distribution functions (pdf) is used.

IV. ELECTRON IDENTIFICATION EFFICIENCY

The o�ine selection e�ciencies for electrons are determined using the Z ! ee data
sample. One tight electron tags the event so that other electron can be used to calculate
e�ciencies. The events are chosen in mass window around Z mass.

SELECTION CUTS CC EC

Loose electron id 92.9�0.7% {
Tight electron id 74.1�0.6% 52.6�1.0%

6



Triggers are fully e�cient in the high dielectron invariant mass region. The combined dielec-
tron identi�cation e�ciency is 81.4�1.4% for CC-CC electrons, and 47.9�1.0% for CC-EC
electrons.

The mass dependence of dielectron identi�cation e�ciency is studied using GEANT
based detector simulation. It shows the e�ciency to be independent of dielectron mass.

V. BACKGROUNDS

The major background source is QCD jets being misidenti�ed as electrons. Taking
an unbiased jet sample which is free of electrons we estimate the probability of a jet to be
misidenti�ed as an electron. The probability depends on jet ET and electron category. Prob-
ability of a jet with 100 GeV ET to be misidenti�ed as a tight electron is about 0.0008 and a
loose electron is about 0.0018. The signi�cance of this background is due to the large QCD
cross section. Contributions from multijet and -jet events are estimated independently.

The choice of electron selection categories permits a photon to be identi�ed as an electron.
The following sources are also considered for background estimation

� W ! ee

� Z ! ee

� t�t! ee

� WW ! ee

� �=Z ! �� ! ee

We generate these process using PYTHIA and then simulate for detector e�ects using
parametric Monte Carlo. We �nd these backgrounds to be small in the high dielectron
invariant mass region.

VI. CROSS SECTION CALCULATION AND K FACTOR

We calculate the cross section for Drell-Yan+contact term process using the matrix
elements provided in [3], [4]. These cross sections being leading order, are corrected for
higher order processes using a K-factor. The K-factor is de�ned to be ratio of NNLO Drell-
Yan cross section from [6] to LO Drell-Yan cross section calculation.

VII. LIMIT CALCULATION AND RESULTS

Figure 2 shows the event distribution of dielectron data. Figure 2 also shows normalized
event distributions expected from Drell-Yan and Drell-Yan+contact interaction processes.
Background is added to theoretical expectation. The e�ects of kinematic and �ducial cuts
and detector smearing are simulated using a parametric Monte Carlo. The theoretical ex-
pectations are normalized to the data using luminosity of data, dielectron identi�cation
e�ciency and K-factor. We observe no deviation from the Standard Model.

7



FIG. 2. Event distribution of dielectron data. The corresponding distributions for theoretical

expectations are also shown, where the e�ects of kinematic and �ducial cuts and detector smearing

are folded into the theory, and the theory is normalized to the data luminosity, dielectron identi�-

cation e�ciency and K factor. Background is added to theoretoical expectation. Errors shown are

statistical.

In a model of composite quarks and leptons, the expected number of events Nk
� in the

kth invariant mass bin for a compositeness scale � can be written in the form

Nk
� = bk + L�k��

k
� (2)

where bk is the expected background, L is the luminosity of data, �k� is the signal e�ciency
and �k� is the cross section predicted by the compositeness model.

The probability of the observed distribution of dielectron events, with Nk
0 events in kth

bin, given the expected distribution due to compositeness with scale � can be written as

P (djb�L����) =
nY

k=1

e�N
k

�Nk
�

Nk

0

Nk
0 !

(3)

Using the Bayes technique the above probability is inverted to obtain Posterior prob-
ability denstity P(�jd). Variation of P(�jd) with respect to � is shown for positive and
negative interference in �gure 3. Con�dence limit is calculated from the plot of cumulative
probability density also shown in �gure 3. The � value at which the cumulative probability
density equals 0.95 is the 95% CL limit on �.

For di�erent contact interaction models, 95% CL lower limit on energy scale of compos-
iteness � is shown in the following table:
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FIG. 3. Con�dence level of compositeness scale � calculated using cumulative probability for

positive and negative interference terms for the LL model.

Model �+ (GeV) �� (GeV)

LL 3300 4200
RR 3300 4000
LR 3400 3600
RL 3300 3700
V V 4900 6100
AA 4700 5500

VIII. CONCLUSIONS

Using the Run 1 data, we have studied the dielectron invariant mass spectrum at
high mass. We �nd that the observed number of events are consistent with the Standard
Model prediction and the expected backgrounds. We set limits on the cross section for
quark-electron contact interactions due to compositeness. The 95% lower limit varies from
�+ = 3300 GeV in RR model to �� = 6100 GeV in VV model.
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